Другие алгоритмы обучения многослойного персептрона


Выше было описано, как с помощью алгоритма обратного распространения осуществляется градиентный спуск по поверхности ошибок. Вкратце дело происходит так: в данной точке поверхности находится направление скорейшего спуска, затем делается прыжок вниз на расстояние, пропорциональное коэффициенту скорости обучения и крутизне склона, при этом учитывается инерция, те есть стремление сохранить прежнее направление движения. Можно сказать, что метод ведет себя как слепой кенгуру - каждый раз прыгает в направлении, которое кажется ему наилучшим. На самом деле шаг спуска вычисляется отдельно для всех обучающих наблюдений, взятых в случайном порядке, но в результате получается достаточно хорошая аппроксимация спуска по совокупной поверхности ошибок. Существуют и другие алгоритмы обучения MLP, однако все они используют ту или иную стратегию скорейшего продвижения к точке минимума.

В некоторых задачах бывает целесообразно использовать такие - более сложные - методы нелинейной оптимизации. В пакете ST Neural Networks реализованы два подобных метода: методы спуска по сопряженным градиентам и Левенберга -Маркара (Bishop, 1995; Shepherd, 1997), представляющие собой очень удачные варианты реализации двух типов алгоритмов: линейного поиска и доверительных областей.

Алгоритм линейного поиска действует следующим образом: выбирается какое-либо разумное направление движения по многомерной поверхности. В этом направлении проводится линия, и на ней ищется точка минимума (это делается относительно просто с помощью того или иного варианта метода деления отрезка пополам); затем все повторяется сначала. Что в данном случае следует считать "разумным направлением"? Очевидным ответом является направление скорейшего спуска (именно так действует алгоритм обратного распространения). На самом деле этот вроде бы очевидный выбор не слишком удачен. После того, как был найден минимум по некоторой прямой, следующая линия, выбранная для кратчайшего спуска, может "испортить" результаты минимизации по предыдущему направлению (даже на такой простой поверхности, как параболоид, может потребоваться очень большое число шагов линейного поиска). Более разумно было бы выбирать "не мешающие друг другу " направления спуска - так мы приходим к методу сопряженных градиентов (Bishop, 1995).

Идея метода состоит в следующем: поскольку мы нашли точку минимума вдоль некоторой прямой, производная по этому направлению равна нулю. Сопряженное направление выбирается таким образом, чтобы эта производная и дальше оставалась нулевой - в предположении, что поверхность имеет форму параболоида (или, грубо говоря, является "хорошей и гладкой "). Если это условие выполнено, то для достижения точки минимума достаточно будет N эпох. На реальных, сложно устроенных поверхностях по мере хода алгоритма условие сопряженности портится, и тем не менее такой алгоритм, как правило, требует гораздо меньшего числа шагов, чем метод обратного распространения, и дает лучшую точку минимума (для того, чтобы алгоритм обратного распространения точно установился в некоторой точке, нужно выбирать очень маленькую скорость обучения).

Метод доверительных областей основан на следующей идее: вместо того, чтобы двигаться в определенном направлении поиска, предположим, что поверхность имеет достаточно простую форму, так что точку минимума можно найти (и прыгнуть туда) непосредственно. Попробуем смоделировать это и посмотреть, насколько хорошей окажется полученная точка. Вид модели предполагает, что поверхность имеет хорошую и гладкую форму (например, является параболоидом), - такое предположение выполнено вблизи точек минимума. Вдали от них данное предположение может сильно нарушаться, так что модель будет выбирать для очередного продвижения совершенно не те точки. Правильно работать такая модель будет только в некоторой окрестности данной точки, причем размеры этой окрестности заранее неизвестны. Поэтому выберем в качестве следующей точки для продвижения нечто промежуточное между точкой, которую предлагает наша модель, и точкой, которая получилась бы по обычному методу градиентного спуска. Если эта новая точка оказалась хорошей, передвинемся в нее и усилим роль нашей модели в выборе очередных точек; если же точка оказалась плохой, не будем в нее перемещаться и увеличим роль метода градиентного спуска при выборе очередной точки (а также уменьшим шаг). В основанном на этой идее методе Левенберга-Маркара предполагается, что исходное отображение является локально линейным (и тогда поверхность ошибок будет параболоидом).

Метод Левенберга-Маркара (Levenberg, 1944; Marquardt, 1963; Bishop, 1995) - самый быстрый алгоритм обучения из всех, которые реализованы в пакете ST Neural Networks, но, к сожалению, на его использование имеется ряд важных ограничений. Он применим только для сетей с одним выходным элементом, работает только с функцией ошибок сумма квадратов и требует памяти порядка W**2 (где W - количество весов у сети; поэтому для больших сетей он плохо применим). Метод сопряженных градиентов почти так же эффективен, как и этот метод, и не связан подобными ограничениями.

При всем сказанном метод обратного распространения также сохраняет свое значение, причем не только для тех случаев, когда требуется быстро найти решение (и не требуется особой точности). Его следует предпочесть, когда объем данных очень велик, и среди данных есть избыточные. Благодаря тому, что в методе обратного распространения корректировка ошибки происходит по отдельным случаям, избыточность данных не вредит (если, например, приписать к имеющемуся набору данных еще один точно такой же набор, так что каждый случай будет повторяться дважды, то эпоха будет занимать вдвое больше времени, чем раньше, однако результат ее будет точно таким же, как от двух старых, так что ничего плохого не произойдет). Методы же Левенберга-Маркара и сопряженных градиентов проводят вычисления на всем наборе данных, поэтому при увеличении числа наблюдений продолжительность одной эпохи сильно растет, но при этом совсем не обязательно улучшается результат, достигнутый на этой эпохе (в частности, если данные избыточны; если же данные редкие, то добавление новых данных улучшит обучение на каждой эпохе). Кроме того, обратное распространение не уступает другим методам в ситуациях, когда данных мало, поскольку в этом случае недостаточно данных для принятия очень точного решения (более тонкий алгоритм может дать меньшую ошибку обучения, но контрольная ошибка у него, скорее всего, не будет меньше).

Кроме уже перечисленных, в пакете ST Neural Networks имеются две модификации метода обратного распространения - метод быстрого распространения (Fahlman, 1988) и дельта-дельта с чертой (Jacobs, 1988), - разработанные с целью преодолеть некоторые ограничения этого подхода. В большинстве случаев они работают не лучше, чем обратное распространение, а иногда и хуже (это зависит от задачи). Кроме того, в этих методах используется больше управляющих параметров, чем в других методах, и поэтому ими сложнее пользоваться. Мы не будем описывать это методы подробно в данной главе.