Главная->Нейронные сети->Пре/пост процессирование
Пре/пост процессирование
Всякая нейронная сеть принимает на входе числовые значения и выдает на выходе также числовые значения. Передаточная функция для каждого элемента сети обычно выбирается таким образом, чтобы ее входной аргумент мог принимать произвольные значения, а выходные значения лежали бы в строго ограниченном диапазоне ("сплющивание"). При этом, хотя входные значения могут быть любыми, возникает эффект насыщения, когда элемент оказывается чувствительным лишь к входным значениям, лежащим в некоторой ограниченной области. На этом рисунке представлена одна из наиболее распространенных передаточных функций - так называемая логистическая функция (иногда ее также называют сигмоидной функцией, хотя если говорить строго, это всего лишь один из частных случаев сигмоидных - т.е. имеющих форму буквы S - функций). В этом случае выходное значение всегда будет лежать в интервале (0,1), а область чувствительности для входов чуть шире интервала (-1,+1). Данная функция является гладкой, а ее производная легко вычисляется - это обстоятельство весьма существенно для работы алгоритма обучения сети (в этом также кроется причина того, что ступенчатая функция для этой цели практически не используется).
[Neural Network Example]
Коль скоро выходные значения всегда принадлежат некоторой ограниченной области, а вся информация должна быть представлена в числовом виде, очевидно, что при решении реальных задач методами нейронных сетей требуются этапы предварительной обработки - пре-процессирования - и заключительной обработки - пост-процессирования данных (Bishop, 1995). Соответствующие средства имеются в пакете ST Neural Networks. Здесь нужно рассмотреть два вопроса:
Шкалирование. Числовые значения должны быть приведены в масштаб, подходящий для сети. Обычно исходные данные масштабируются по линейной шкале. В пакете ST Neural Networks реализованы алгоритмы минимакса и среднего/стандартного отклонения, которые автоматически находят масштабирующие параметры для преобразования числовых значений в нужный диапазон.
В некоторых случаях более подходящим может оказаться нелинейное шкалирование (например, если заранее известно, что переменная имеет экспоненциальное распределение, имеет смысл взять ее логарифм). Нелинейное шкалирование не реализовано в модуле ST Neural Networks. Вы можете прошкалировать переменную средствами преобразования даных базовой системы STATISTICA, а затем работать с ней в модуле ST Neural Networks.
Номинальные переменные. Номинальные переменные могут быть двузначными (например, Пол ={Муж, Жен}) или многозначными (т.е. принимать более двух значений или состояний). Двузначную номинальную переменную легко преобразовать в числовую (например, Муж = 0, Жен = 1). С многозначными номинальными переменными дело обстоит сложнее. Их тоже можно представить одним числовым значением (например, Собака = 0, Овца = 1, Кошка = 2), однако при этом возникнет (возможно) ложное упорядочивание значений номинальной переменной: в рассмотренном примере Овца окажется чем-то средним между Собакой и Кошкой. Существует более точный способ, известный как кодирование 1-из-N, в котором одна номинальная переменная представляется несколькими числовыми переменными. Количество числовых переменных равно числу возможных значений номинальной переменной; при этом всякий раз ровно одна из N переменных принимает ненулевое значение (например, Собака = {1,0,0}, Овца = {0,1,0}, Кошка = {0,0,1}). В пакете ST Neural Networks имеются возможности преобразовывать как двух-, так и многозначные номинальные переменные для последующего использования в нейронной сети. К сожалению, номинальная переменная с большим числом возможных состояний потребует при кодировании методом 1-из-N очень большого количества числовых переменных, а это приведет к росту размеров сети и создаст трудности при ее обучении. В таких ситуациях возможно (но не всегда достаточно) смоделировать номинальную переменную с помощью одного числового индекса, однако лучше будет попытаться найти другой способ представления данных.
Задачи прогнозирования можно разбить на два основных класса: классификация и регрессия.
В задачах классификации нужно бывает определить, к какому из нескольких заданных классов принадлежит данный входной набор. Примерами могут служить предоставление кредита (относится ли данное лицо к группе высокого или низкого кредитного риска), диагностика раковых заболеваний (опухоль, чисто), распознавание подписи (поддельная, подлинная). Во всех этих случаях, очевидно, на выходе требуется всего одна номинальная переменная. Чаще всего (как в этих примерах) задачи классификации бывают двузначными, хотя встречаются и задачи с несколькими возможными состояниями.
В задачах регрессии требуется предсказать значение переменной, принимающей (как правило) непрерывные числовые значения: завтрашнюю цену акций, расход топлива в автомобиле, прибыли в следующем году и т.п.. В таких случаях в качестве выходной требуется одна числовая переменная.
Нейронная сеть может решать одновременно несколько задач регрессии и/или классификации, однако обычно в каждый момент решается только одна задача. Таким образом, в большинстве случаев нейронная сеть будет иметь всего одну выходную переменную; в случае задач классификации со многими состояниями для этого может потребоваться несколько выходных элементов (этап пост-процессирования отвечает за преобразование информации из выходных элементов в выходную переменную).
В пакете ST Neural Networks для решения всех этих вопросов реализованы специальные средства пре- и пост-процессирования, которые позволяют привести сырые исходные данные в числовую форму, пригодную для обработки нейронной сетью, и преобразовать выход нейронной сети обратно в формат входных данных. Нейронная сеть служит "прослойкой"между пре- и пост-процессированием, и результат выдается в нужном виде (например, в задаче классификации выдается название выходного класса). Кроме того, в пакете ST Neural Networks пользователь может (если пожелает) получить прямой доступ к внутренним параметрам активации сети.