Главная->Нейронные сети->Применение нейронных сетей
Применение нейронных сетей
В предыдущем разделе в несколько упрощенном виде было описано, как нейронная сеть преобразует входные сигналы в выходные. Теперь возникает следующий важный вопрос: как применить нейронную сеть к решению конкретной задачи?
Класс задач, которые можно решить с помощью нейронной сети, определяется тем, как сеть работает и тем, как она обучается. При работе нейронная сеть принимает значения входных переменных и выдает значения выходных переменных. Таким образом, сеть можно применять в ситуации, когда у Вас имеется определенная известная информация, и Вы хотите из нее получить некоторую пока не известную информацию (Patterson, 1996; Fausett, 1994). Вот некоторые примеры таких задач:
Прогнозирование на фондовом рынке. Зная цены акций за последнюю неделю и сегодняшнее значение индекса FTSE, спрогнозировать завтрашнюю цену акций.
Предоставление кредита. Требуется определить, высок ли риск предоставления кредита частному лицу, обратившемуся с такой просьбой. В результате разговора с ним известен его доход, предыдущая кредитная история и т.д.
Управление. Нужно определить что должен делать робот (повернуться направо или налево, двигаться вперед и т.д.), чтобы достичь цели; известно изображение, которое передает установленная на роботе видеокамера.
Разумеется, вовсе не любую задачу можно решить с помощью нейронной сети. Если Вы хотите определить результаты лотереи, тираж которой состоится через неделю, зная свой размер обуви, то едва ли это получится, поскольку эти вещи не связаны друг с другом. На самом деле, если тираж проводится честно, то не существует такой информации, на основании которой можно было бы предсказать результат. Многие финансовые структуры уже используют нейронные сети или экспериментируют с ними с целью прогнозирования ситуации на фондовом рынке, и похоже, что любой тренд, прогнозируемый с помощью нейронных методов, всякий раз уже бывает "дисконтирован" рынком, и поэтому (к сожалению) эту задачу Вам тоже вряд ли удастся решить.
Итак, мы приходим ко второму важному условию применения нейронных сетей: Вы должны знать (или хотя бы иметь серьезные подозрения), что между известными входными значениями и неизвестными выходами имеется связь. Эта связь может быть искажена шумом (так, едва ли можно ожидать, что по данным из примера с прогнозированием цен акций можно построить абсолютно точный прогноз, поскольку на цену влияют и другие факторы, не представленные во входном наборе данных, и кроме того в задаче присутствует элемент случайности), но она должна существовать.
Как правило, нейронная сеть используется тогда, когда неизвестен точный вид связей между входами и выходами, - если бы он был известен, то связь можно было бы моделировать непосредственно. Другая существенная особенность нейронных сетей состоит в том, что зависимость между входом и выходом находится в процессе обучения сети. Для обучения нейронных сетей применяются алгоритмы двух типов (разные типы сетей используют разные типы обучения): управляемое ("обучение с учителем") и не управляемое ("без учителя"). Чаще всего применяется обучение с учителем, и именно этот метод мы сейчас рассмотрим (о неуправляемом обучении будет рассказано позже).
Для управляемого обучения сети пользователь должен подготовить набор обучающих данных. Эти данные представляют собой примеры входных данных и соответствующих им выходов. Сеть учится устанавливать связь между первыми и вторыми. Обычно обучающие данные берутся из исторических сведений. В рассмотренных выше примерах это могут быть предыдущие значения цен акций и индекса FTSE, сведения о прошлых заемщиках - их анкетные данные и то, успешно ли они выполнили свои обязательства, примеры положений робота и его правильной реакции.
Затем нейронная сеть обучается с помощью того или иного алгоритма управляемого обучения (наиболее известным из них является метод обратного распространения, предложенный в работе Rumelhart et al., 1986), при котором имеющиеся данные используются для корректировки весов и пороговых значений сети таким образом, чтобы минимизировать ошибку прогноза на обучающем множестве. Если сеть обучена хорошо, она приобретает способность моделировать (неизвестную) функцию, связывающую значения входных и выходных переменных, и впоследствии такую сеть можно использовать для прогнозирования в ситуации, когда выходные значения неизвестны.